3.1.75 \(\int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx\) [75]

3.1.75.1 Optimal result
3.1.75.2 Mathematica [A] (verified)
3.1.75.3 Rubi [A] (verified)
3.1.75.4 Maple [B] (verified)
3.1.75.5 Fricas [C] (verification not implemented)
3.1.75.6 Sympy [F]
3.1.75.7 Maxima [F]
3.1.75.8 Giac [F]
3.1.75.9 Mupad [F(-1)]

3.1.75.1 Optimal result

Integrand size = 21, antiderivative size = 95 \[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=-\frac {6 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^3 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 b \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}} \]

output
2/5*b^3*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+6/5*b*sin(d*x+c)/d/(b*cos(d*x+c) 
)^(1/2)-6/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin( 
1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)
 
3.1.75.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.73 \[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\frac {2 \sqrt {b \cos (c+d x)} \sec ^2(c+d x) \left (-3 \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {3}{2} \sin (2 (c+d x))+\tan (c+d x)\right )}{5 d} \]

input
Integrate[Sqrt[b*Cos[c + d*x]]*Sec[c + d*x]^4,x]
 
output
(2*Sqrt[b*Cos[c + d*x]]*Sec[c + d*x]^2*(-3*Cos[c + d*x]^(3/2)*EllipticE[(c 
 + d*x)/2, 2] + (3*Sin[2*(c + d*x)])/2 + Tan[c + d*x]))/(5*d)
 
3.1.75.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 2030, 3116, 3042, 3116, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^4 \int \frac {1}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle b^4 \left (\frac {3 \int \frac {1}{(b \cos (c+d x))^{3/2}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^4 \left (\frac {3 \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^4 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^4 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^4 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^4 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^4 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

input
Int[Sqrt[b*Cos[c + d*x]]*Sec[c + d*x]^4,x]
 
output
b^4*((2*Sin[c + d*x])/(5*b*d*(b*Cos[c + d*x])^(5/2)) + (3*((-2*Sqrt[b*Cos[ 
c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]]) + (2*Sin[c 
 + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/(5*b^2))
 

3.1.75.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
3.1.75.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(363\) vs. \(2(107)=214\).

Time = 2.55 (sec) , antiderivative size = 364, normalized size of antiderivative = 3.83

method result size
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{5 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(364\)

input
int(sec(d*x+c)^4*(cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/5*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d 
*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+ 
1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c 
),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c) 
+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic 
E(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2* 
cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2- 
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4*b 
+b*sin(1/2*d*x+1/2*c)^2)^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.1.75.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.24 \[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\frac {-3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right )}{5 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate(sec(d*x+c)^4*(b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/5*(-3*I*sqrt(2)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*sqrt(b)*cos 
(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x + c))*(3*cos(d*x + c)^2 + 1)*sin(d* 
x + c))/(d*cos(d*x + c)^3)
 
3.1.75.6 Sympy [F]

\[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\int \sqrt {b \cos {\left (c + d x \right )}} \sec ^{4}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**4*(b*cos(d*x+c))**(1/2),x)
 
output
Integral(sqrt(b*cos(c + d*x))*sec(c + d*x)**4, x)
 
3.1.75.7 Maxima [F]

\[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*cos(d*x + c))*sec(d*x + c)^4, x)
 
3.1.75.8 Giac [F]

\[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{4} \,d x } \]

input
integrate(sec(d*x+c)^4*(b*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*cos(d*x + c))*sec(d*x + c)^4, x)
 
3.1.75.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \cos (c+d x)} \sec ^4(c+d x) \, dx=\int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int((b*cos(c + d*x))^(1/2)/cos(c + d*x)^4,x)
 
output
int((b*cos(c + d*x))^(1/2)/cos(c + d*x)^4, x)